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INTRODUCTION

In this paper we develop new methods for studying monosplines. In
particular we develop a general theory for characterizing monosplines of
least norm. Karlin announced results on the existence and characterization
of monosplines of least norm in [11]. The present paper arose from our
attempts to furnish proofs of these results and extend them. (We have
since been informed by Karlin that he has given proofs in [23]). In
another direction, we have extended these results to the problem of optimal
quadrature formulas for analytic functions in [3]. The present paper comple
ments Karlin's results by showing not only that there does exist a totally
positive monospline of least norm that has simple knots but also that every
monospline of least norm has this property. Our general approach is new
and uses some tools developed by Braess [6, 7] and the concept of extended
varisolvence [1].

In the first part of this paper we consider smooth monosplines. In the
second part we treat polynomial monosplines by using smoothing techniques
and the methods of the first part. Although it would have been possible to
treat polynomial monosplines directly, we felt that dividing the paper in two
parts was warranted because: 1) The methods used in both parts of the paper
are the same, but they are much easier to understand in the first part, and
2) the results of the first part have intrinsic interest. Our treatment of poly
nomial monosplines does not include the uniform norm. Johnson [22] and
Schumaker [2] have treated this case. In a future paper we plan to develop
a general procedure for treating such problems.
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In this part of the paper we will restrict our attention to an extended
totally positive kernel K(x, y) as defined in [10, 11]. We will assume that
K(x, y) is defined on Y X Y, where Y is an open interval on the real line
(possibly infinite) which contains [0, 1]. We will further assume that all
derivatives occurring in Eqs. (l.l), (1.4) below are continuous.

The problem we deal with in this part of the paper is the following:

PROBLEM. For any I ~ p < 00, let II II be the Lp[O, I] norm and
F(x) = f~ K(x, y) dy. For fixed positive integers N, M o' M 1 we seek the
g(x) of the form

t mi-1 Mo-l M1-l

g(x) = L L aijK(j)(x, Yi) + L ajK(j)(x,O) + L bjK(j)(x, 1), (l.l)
i~l i~O i~O i~O

with

M i ~ M i (i = 0, 1),

which minimizes

t

L mi + Mo + M1 ~ N + M o + M 1 ,
i~l

IIF+glI· (1.2)

More explicitly, Yl < Y2 < ... < Yt, Yi =1= 0, 1, are free parameters all
lying in Y and {aij, ai ,bi } are also free parameters with ai.m.-l =1= °
(i = 1,... , t), aMe-l =1= ° if Mo > M o , and bM- 1 =1= ° if M1 '> MI'
K(j)(x, y) = (oi/oyi) K(x, y). Each Yi is called a free knot of g and F + g
is called a monospline.

Our strategy will be to show that for each finite closed interval [c, d] such
that [0, 1] C (c, d) C Y, there is a g of the form (l.l) which minimizes (1.2)
when the Yi are restricted to lie in [c, d]. Further we will prove that any such
minimizer has the property that its free knots are N in number and all lie
in (0, 1). It will also be shown that all the coefficients associated with the
free knots are strictly negative. Clearly, if the free knots are allowed to range
over Y the same result holds.

We begin with a fixed finite closed interval [c, d] in Y which properly
contains [0, I], we seek to minimize (1.2) when the free knots of g range over
[c, d].

Since the free knots vary over a compact set [c, d], a slight modification
of known results [18, Section 8.4] is that:

LEMMA 1.1. For 1 ~ p < 00 there exists an optimal g, with knots
restricted to [c, d], that is, a g which minimizes (1.2).
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DEFINITION 1.1. For some fixed p, 1 ~ p < 00, let H(N, M o , M l ,c, d)
be all functions of the form (1.1) with knots Yi E [c, d]. hex) is said to be in
the gradient space of g(x) if there are functions G(u, x) and hex) satisfying
the following conditions.

(a) G(u, x) E H(N, M o , Ml , C, d), for u E [0, 8], 8 > 0.

(b) G(O, x) = g(x).

(c) oG(u, x)jou lu~o = hex).

(d) There are a 8 > °and a k(x) E £1[0, 1] (depending on G(u, x))
such that for u E [0, 0], X E [0, 1], (oGjou)(u, x) is separately continuous in u
for almost all values of x, with [F(x) + G(x, U)!p-l [(oGjou)(u, x)[ ~ k(x).

For 1 ~ p < 00 the usual variational result, namely, Lemma 1.2, holds
(see [15; 21, Theorem 46, p. 59]). Note that as an application of [2, Theorem 3]
shows, F + g has only a finite number of zeros, hence p = 1 causes no
difficulties in the following lemma.

LEMMA 1.2. Ifg is optimal

rsgn(F + g) IF + g [P-l h ;? °
o

for h in the gradient space of g.

Lemma 1.3 below describes the gradient space of g. For the statement of
Lemma 1.3 we introduce the notation

Mi = M i + 1

= M i

if M i > M i

if M i = M i

(i = 0, 1),

(i = 0, 1).

Also, me is the multiplicity of c as a free knot of g, md is the multiplicity of d
as a free knot of g, I = {Yi : Yi free knot of g : Yi =1= 0, 1, c, d}, and p is the
number of elements in I.

Further,

where

P

d(g) = L (mi + 1) + Mo + Nil + me + md + I
i~l

P

1= N + M o + M l - L mi - M o - M l - me - md .
i~l

(1.3)

d(g) is called the degree of varisolvence of g.
For the statement of Lemma 1.3, we also need the following definition of

the space H(g).
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Choose I points 0 < 5\ < Y2 < .. , < Yt < 1 which are distinct from the
free knots of g. Then consider the d( g)-dimensional subspace of qo, 1):

1

t m·

H( g) = t1 CiK(X, Yi) -+ ~ to CijK(j)(x, y;)

mc-l mal

-+ I pjK(j)(x, c) + I qjK(j)(x, d)
j~O j~O

'\fO-1 Mel

+ I djK(j)(x,O) -+ I ejK(j)(x, 1);
j~O j=O

pj , qj , Ci , Cij , dj , ej free rea! parametersl.

Clearly H( g) has a basis which forms a Markoff system [9, p. 76].

(1.4)

LEMMA 1.3. (a) The gradient space of g of the form (1.1) contains
H(g) ffi cone(g), where H(g) is the d(g) dimensional linear space described
in (1.3) and (1.4), and cone(g) is a cone described below.

(b) If g has a free knot at c {resp. d} of multiplicity me {resp. md} then
cone( g) includes the functions

with the restriction

(1.5)

where Y1 = c (l.6)

{resp. sgn Pm
d

= -sgn at,m
d
-1 , where Yt = d}.

(c) If g has a free knot at Ya' 0 < Ya < 1 with multiplicity ma > 1,
then cone(g) contains the functions

C K(mq+1)(x y) (1.7)Q.mq+l , q

with the restriction

(1.8)

Proof Parts (a) and (b) follow immediately by letting the parameters
{aij , aj , bj ,Yj} in (1.1) vary with u in the case Jr1i = M i (i = 0, 1). We will
return to the other case after proving part (c).

Part (c) is proved in [7]. However, because of its importance for our
considerations we give another proof. Our proof has the further advantage
that it generalizes to splines (see Lemma 2.4).
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Clearly it will be sufficient to prove the result for

m-l

g(X) = I ajKU)(x, Yq)·
j~O

(1.9)

(1.10)

We begin by letting p(Y) be the unique polynomial of degree at most
m - 1, with real coefficients such that

1 d
m

-
1 I

g(x) = (m _ I)! dym-l (p(y) K(x, y» Y~Yq •

If K(x, y) is not analytic in y, we can approximate it by functions {K.(x, y)}
that are analytic in y and such that

lim K;j)(x, y) -+ K(j)(x, y) uniformly on
.-.0

[0, 1] x [0, 1] for j = 0, 1,... , In + 1.

(See the second part of this paper.)
Let r be a positively oriented circle with yq as center. We consider suffi

ciently small u > 0, so that yq ± U1 / 2 lie strictly inside of r. We then define
for u > 0:

G x u = _1_ f p(z) K.(x, z) dz
.( ,) 21Ti r (z - yq)'n-2((z - yq)2 - u)

m-3

= I doj(u) K;j)(x, yq) + d1(u) K.(x, yq + U1/2) (1.11)
j~O

and

8G.(x, u) = _1_ J p(z) K.(x, z) dz
8u 21Ti r (z - Yq)m-2((z ~ Yq)2 - U)2

(Ll2)

1

+ I [lli(U) K;j)(x, yq + U1 / 2) + /2j(U) K;j)(x, Yq - U1 / 2)].

j~O

This follows by a partial fraction decomposition, and Cauchy's Integral
Formula.

Since the right-hand sides of (1.11) and (l.I2) do not depend on the K.(x, y)
being analytic, we can replace the K.(x, y) by K(x, y) and thus define two
new functions G(x, u), H(x, u), respectively (see (1.10». Because these
expressions are really divided differences, we have by the linearity of divided
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differences and the generalized mean value theorem for divided differences
(see [16, Chap. III, Problem 164, Chap. V, Problem 97]):

aG(x, u) + bG.(x, u) = (m ~ 1)1 ;ym::~1 (p(y)(aK(x, y) + bK.(x, y)) Iy~y'

yq - U1/2 < ji < yq + U1/2 (1.13)

8G 1 dm+l I
aH(x, u) + b -8• (x, u) = ( ..L 1) , d m+l (p(y)(aK(x, y) + bK.(x, y)) • '

u mi' Y ~y

yq - U1/2 < Y < yq + U1/2 (1.14)

(ji and y depend on a and b, ji = Y = yq when u = 0).
For a = 1, b = -1 in (1.13), (1.14) we find using (1.10) that for fixed

x, G.(x, u) uniformly approaches G(x, u) and (8GJ8u)(x, u) uniformly
approaches H(x, u). Thus we can assert that (8Gj8u)(x, u) = H(x, u) and
(8Gj8u)(x, u) is continuous in u for x E [0, 1], u E [0, 0].

Further, by setting a = 1, b = 0 in (1.13), (1.14), we find that G(x, u) and
(oGjou)(x, u) are uniformly bounded, and that

lim G(x, u) = g(x),
u->O

lim 8G(x, u) = 1 dm+l ( ( ) K(x )) I
u->O 8u (m + I)! dyrn+l p y ,y Y~Yq'

(1.15)

Hence (d) of Definition 1.1 is verified, for this G(x, u). Thus we have shown
the function on the right side of (1.15) is in the gradient space of g(x). To
get the complete result, we can easily extend the above analysis of (l.II) to

G 1 f p(z) + UPl(Z)
.(x, u) = -2' ( )m-2« )2 ) K.(x, z) dz

TTl r z-y z-y-w
(1.16)

(1.17)

where w = ,\u, y = yq + A2u, and Pl(Z) is an arbitrary polynomial with
real coefficients of degree m - I; Al , 10.2 constants; Al > O. Note

G.(x, 0) = g(x) ,

8G.(x, u) I _ 1 dm+l, I
au U~O - Al (m + I)! dym+l (p(}) K.(x, y)) Y~Yq

1 d
m I+ 10.2 (m - 1)' dym (p(y) K.(x, y)) Y~Yq

1 d rn
-

1 I+ (m - I)! dyrn-l (Pl(Y) K(x, y)) Y~Yq'

This completes the proof of part (c).
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We now return to the proof of part (a) when either M2 > Mo or MI > MI'
For example, if Mo > Mo = m, then as in part (c) it suffices to prove the
result for

m-l

g(x) = L ajK(j)(x, 0).
j~O

We follow the proof of part (c) but in (I.I I) we replace G.(x, u) by

G (x u) = _1_ r p(z) K.(x, z) dz
.' 27Ti Jr zm-l(z - u) ,

where u varies in both directions from zero. Proceeding as in part (c), it follows
that the function oG(x, u)jou defined in (I.I5) is in the unrestricted gradient
space of g(x). In (I.I6), if one makes the obvious modification it is clear then
that the function

Mo-l

I djK(j)(x, 0),
j~O

where the {dj } are an arbitrary set of real numbers, is in the gradient space
of g(x) (see (1.4». This completes the proof. I

DEFINITION 1.2. We say that f(x) a continuous function defined for
o ~ x ~ 1 has k sign changes or S-(f) = k if there is a maximal set of
k + I points Xi' with 0 ~ Xo < Xl < ... < Xk ~ 1 such thatf(xi)f(xi+l) < 0,
i = O, ... ,k.

Note. In the last half of this paper we extend this definition to piecewise
continuous functions f(x), with the proviso that none of the x/s used in
the definition are points of discontinuity of f(x).

LEMMA 1.4. Let H be a subspace of C[O, I] of dimension n ;? k + I,
for which there is a basis whichforms a Markoff system. IffE C[O, 1] has only
afinite number ofzeros with S-(f) = k, then there is an hI E H, so hl(x) = 0 =>

f(x) = 0 andfor which hI! ~ 0 and f~ hI! < O.

Proof We assume that the dimension of His k + 1, for ifnot we consider
a (k + I)-dimensional subspace which has a Markoff basis. If Xi , i = 0, ... , k,
is a maximal set of points for the sign changes ofJ, choose hI to vanish at
the k points ti , i = 0,... , k - 1, where ti = lub{x I Xi < X < Xi+! ,
sgnf(x) = sgnf(xi)}' Then hl(x) not identically zero is uniquely determined
by further requiring hl(xo) = -f(xo) =1= O.

It now follows, from the previous lemmas, that
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LEMMA 1.5. For 1 < p < 00, g optimal implies S-(P + g) ~ d(g).

A device introduced by Braess [6] will be useful. Let

227

where

t mj

h2(x) = I I hi;K(j)(x, Yi),
i~l ;~O

(1.18)

t

M = I mi + 1 hi,mj *°
i=l

(i = 1,... , t), and c < Y1 < Y2 < ... < Yt < d.

DEFINITION 1.3. The generalized sign vector V of h2(x) is the M tuple
of ± 1 defined as

where Si = sgn h.,m. (i = 1,... , t). We say h2 has k generalized sign changes
or V-(h2) = k if there are a maximal number of k + 1 coordinates of
V(h2), Vi' Vi , Vi ,... , Vi where i; < im (j = 0,... , k - 1) such thato 12k

Vi; V
iH1

= -1 (j = 0,... , k - 1). In this case we also say that V(h2) has
k sign changes.

The following result will be used.

LEMMA 1.6 (Braess [6]). Let h2(x) be as in (1.18). Then:

(a) S-(h2) < V-(h2) < M - 1.

(b) If S-(h2) = V-(h2) = k, then sgn h2(x;) = Vij , j = 0, ... , k, where
the X; are a maximal set of coordinates for the sign changes of h2(x) and the
Vi. are a maximal number of coordinates for the sign changes in V(h2).,
We also need a generalization:

DEFINITION 1.4. Let

1 s mi-1

F + fl = J K(x, y) dy + I I aijKUl(x,Yi) (1.20)
o i~l ;~o

wherec <Y1 <Y2 < ... <Ys <d; Ys' < °<Ys'+1,andYs"_l < 1 <Ys",
s' < s", and (Xi = sgn ai.m.-l *°(i = 1,... , s). If D(F + gl) = 'LLI (mi + 1)
and C(P + gl) is the number of Yi which are not in (0, 1), then we define the
generalized sign vector V(P + gl) (which has D(P + gl) - C(P + gl) + 1
components consisting of ± 1) by
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m,

= ((--I)-ml---1-al-,-.~:-(---I-)-al-,-a~l" (_1)m 2-1 a
2

, ... , as' ,

m,p+1E8J, (_~-I-)m-8-,+-,--1-a-s'-+-1 -,.~-(---I-)-a-s'-+-l-,a-
s
-'+~l" IE,

(1.21)

The I+11 are inserted immediately before each (_l)m;-l aj , j = s' + I, ... ,
s" - I, and also immediately after as· -1 . (This takes care of the possibilities
that all knots are greater than°and/or less than 1.)

We say F + gl has k generalized sign changes or V-(F + g1) = k if there
are a maximal number of k + 1 coordinates of V(F + g1)' Vi , Vi ,... , Vio 1 k

where ij < im (j = 0,... , k - I) such that Vi, V
iH1

= -I (j = 0,... , k - 1).
In this case we also say that V(F + gl) has k sign changes.

LEMMA 1.7. With F + gl' V(F + gl)' D(F + gl), and C(F + g1) as in
Definition 1.4, and where E(F + g1) is the number of knots of even multiplicity
in (0, 1):

(a) S-(F + g1) ~ V-(F + g1) ~ D(F + gl) - C(F + g1) - E(F + g1)'

(b) If S-(F + gl) = V-(F + g1) = k, then sgn(F + g1)(Xj) = Vii
(j = 0, ... , k), where the Xj are a maximal set of coordinates for the sign
changes of F + gl , and the Vi. are a maximal number of coordinates for the
sign changes in V(F + gl)' }

Proof We can obviously approximate F(x) uniformly by Riemann sums:

lFn(X) = (l/n) ~: K(x, y~n», i/n < y~n) < (i + I)/n!, (1.22)

where none of the y~n) in (1.22) equals a Yi in (1.20).
For sufficiently large n, we have by Definitions 1.3 and 1.4 and Lemma 1.6

which establishes the first part of (a).
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To establish the second part we first note that V(F + gl) has D(F + gl) 
C(F + &) + 1 components. Corresponding to a knot Yq E (0, 1), the com
ponents of V(F + gl) look like:

([±], (_I)m.-l Ciq , ... , (-1) Ciq , Ciq , I±!.I). (1.24)

If mq is even, (_I)mq-l Ciq oF Ciq , hence the vector (1.24) has mq sign
changes which is one less than is possible with mq + 2 components. In a
similar fashion at each even knot in (0, I) the vector V(F + gl) loses one
possible sign change. This establishes (a). (b) follows from (1.23) and
Lemma 1.6.

LEMMA 1.8. If g of the form (I.I) with knots restricted to lie in [c, d] is
optimal, then

(a) There are no free knots ofF + g in (c, 0] U [1, d).
t

(b) N = Li-l mi .

(c) All free knots in (0, 1) are of odd multiplicity.

(d) S-(F + g) = d(g) = D(F + g) - C(F + g).

Proof From Lemmas 1.7 and 1.5, a necessary condition for g to be
optimal is

D(F + g) - C(F + g) - E(F + g) ~ d(g). (1.25)

We will show that if (a), (b), and (c) do not hold then (1.25) is violated.
Interpreting D(F + g) and C(F + g) of Definition (1.4) and Eq. (1.20)

in terms of Eqs. (I.I) and (1.3) we have, letting eJ)(g) be the number of free
knots in (c, 0) U (1, d),

11

D(F + g) - C(F + g) = L (m; + 1) - eJ)(g) + Mo + M l + me + md
i=l

(1.26)
11

~ L (m; + 1) + lfJo + N!l + me + l11d + 1= d(g).
;~l

Note from Definition (1.2), (1.25), and (1.26) it follows that

(i) eJ)(g) = 0 and Jrili = M; (i = 0, 1), which implies conclusion (a);

(ii) I = 0, which together with (i) yields conclusion (b).

Equations (1.25) and (1.26) yield immediately also that E(F + g) = 0,
hence (c) holds. Finally (d) follows from Lemma 5, (1.25), and (1.26). I
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LEMMA 1.9. Ifg of the form (1.1) with knots restricted to [c, d] is optimal
then

(a) g has no free knots at c or d,

(b) all the free knots of g have multiplicity one,

(c) at a free knot Yi ofmultiplicity one, sgn aiO = -1.

Proof We first prove (a). For ease of exposition, assume g has a free
knot at c of multiplicity me , but no free knot at d. Let B(g) be the d(g) + 1
subspace, consisting of all functions of the form (1.4) and (1.5) without the
restriction (1.6). From Lemma 1.8, S-(F + g) = d(g), hence we may apply
Lemma 1.4 to find a function h E B(g) such that

rsgn(F + g) IF + g [P-l h < 0,
o

(1.27)

and points Xi EO (0, 1), corresponding to the sign changes of F + g, such that

h(Xi)(F + g)(Xi) < 0, i = 0,... , d(g). (1.28)

We now show that the restriction (1.6) holds. From (1.28), S-(h) :? d(g),
but since the dimension of B(g) is d(g) + 1, it follows from Lemma 1.6,
that S-(h) = d(g), and that

sgn hex;) = Vi(h), i = 0'00" d(g). (1.29)

Similarly, since Lemma 1.8(d) asserts that S-(F + g) = d(g) =
D(F + g) - C(F + g), Lemma 1.7 implies

sgn(F + g)(x;) = Vi(F + g), i = 0, ... , d(g). (1.30)

Setting i = °in (1.29) and (1.30), and using Definitions 1.3 and 1.4 of
the generalized sign vectors we find

(_l)m. sgn Pm. = Vo(h) = sgn h(xo) = -sgn(F + g)(xo)

= - Vo(F + g) = (-1)(_1)mc-l sgn a1,mc-l •

(1.31)

This shows that (1.6) holds, hence hex) is in the gradient space of g, thus
by Lemma 1.2, g is not optimal. The possibility of a free knot at (d) is ruled
out using the same methods. Hence the proof of (a) is complete.

Part (b) is proved in a similar fashion. Let g(x) be optimal, with at least
one free knot of odd multiplicity three or greater. Consider the free knot
Yt' , which is the largest free knot of odd multiplicity greater than one-that
is, mt' :? 3, and 1 > Yi > Yt' implies mi = 1.



MONOSPLINES 231

We now consider the d(g) + 1 subspace H(g) of all functions of the form
(1.4) and (1.7), neglecting the restriction (1.8). Proceeding as above, we find

a function h(x) E H(g) satisfying (1.27), (1.28), and (1.29), and as before
(1.30) is satisfied. We now show that this h(x) satisfies (1.8), which will
complete the proof of part (b).

From (1.18), (1.29), and (1.30) it follows that all terms in V(h) and V(F + g)
alternate in sign, and both have the same number of components.

We pair corresponding terms in V(F + g) [with g written in the form (1.1)]
with terms in V(h) [with h written in the form (1.4) and (1.7)]. Starting from
the right end in each vector, we pair

with (1.32)

For Yi > Yt' , we pair

(sgn(aiO)' I±!J) in V(F + g) with «-1) sgn Cil , sgn Cil) in V(h). (1.33)

Finally, we pair

(sgn(at' ,m,d), I±!l) in V(F + g) with «-1) sgn Ct',mt,H ,

sgn Ct' .m"H) in V(h).
(1.34)

From (1.34) it follows from (1.28)-(1.30), that there is a q such that

sgn(at'.m,,_l) = Vq(F + g) = F + g(xq) = -h(xq)

(1.35)

Thus h(x) satisfies (1.8) and this completes the proof of (b). (c) follows,
since as mentioned above all terms in V(F + g) alternate in sign. I

We now allow the parameters for g to range over an open set and sum
marize our results in the following theorem.

THEOREM 1.1. For 1 ~ p < 00 there exists a best approximation g(x)
to F(x) = f~ K(x, y) dy when the parameters for g(x) are allowed to vary
over an open set Y containing [0, 1]. Further, each best approximation is of
the form

Mo-l N M1-l

g(x) = L ajK(j)(x,O) + L aiOK(x, Yi) + L bjK(j)(x, 1) (1.36)
j=O i~l j=O
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(-I)Ml-lbMl_l < 0, aiO < O(i = 1,... , N),

o < Yl < Y2 < ... < YN < I.
(1.37)

Proof Take any minimizing sequence {gN(X)}, with knots restricted
to lie in Y, i.e. limN _7 (() II F + gN II approaches the infimum. By our previous
discussion we know that for each N, we can find a iN with knots restricted
to lie in [0, 1] such that II F + iN II ~ II F + gN II. Thus from our lemmas an
optimal approximation exists and any optimal approximation g(x) is of the
form (1.36), (1.37). I

It is quite clear that these results can be extended to include any finite
positive measure, and the norm could be taken over any finite closed interval.

We have not treated the case of the uniform norm in this paper, but it
should be apparent to the reader that with slight modification our analysis
applies to this case; e.g., Lemma 5 for p = (f) is proved in [18, p. 10].

2. POLYNOMIAL MONOSPLINES

Using the previous results on extended totally positive monosplines and
the technique of smoothing, we are also able to treat polynomial mono~

splines.
We will restrict ourselves to the following problem but our methods extend

to more general problems; see [13].

PROBLEM. For any 1 ~ P < 00, let II II be the Lp[O, 1] norm and
F(x) = f~ (x - y)~-l dy. For fixed integers Nand n we seek the g(x) of the
form

which minimizes

n-l t m;-l .

g(x) = L aixi + L L rij(x - Yi)~-H,
i~O i~l i~O

/IF+gll.

(2.1)

(2.2)

t
Here Li~l mi ~ N, {ai' rij ,Yi} are free real parameters, ri,m;-l =Ie- 0, mi ~ n,
i = 1,... , t, 0 < Yl < Y2 < ... < Yt < 1.

Our first result is

LEMMA 2.1. For 1 ~ P < 00, there exists an optimal g, i.e., a g of the
form (2.1) that minimizes (2.2). Further, for g to be optimal it is necessary
that g be continuous, hence we may assume mi ~ n - I in (2. I).
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Proof The existence of a best approximation is proved, for example,
in [4, 18, 20]. That an optimal g in the L2 norm is continuous is proved in
[17, Theorem 5]. This proof extends to the L1J norm 1 :::;; p < 00. I

Let H(N, n) be all functions of the form (2.1) with mi ~ n - 1. With
H(N, M o , M 1 , C, d) of Definition 1.1 replaced by H(N, n), the definition
carries over to define the gradient space of g.

Since F + g is a nonzero polynomial between knots, it has only a finite
number of zeros. Hence we obtain as previously,

LEMMA 2.2. If g is optimal, 1:::;; p < 00 then
1J
o

sgn(F + g) IF + g lp-l h ~ 0

for h in the gradient space of g.

Before proceeding, we quote a result on smoothing (see [10, pp. 512-513; 5]).

LEMMA 2.3. Let

L(j)(x, y) = (x - y)~-l-jjn - 1 - j!, j = 0, ... , n - 1,

L(x, y) = DO)(x, y),

Ge(z) = (lj(27T)1/2 €) exp(-z2j2€), € > 0,

K~j)(x, y) = Joo G.(x - g) Dj)(g, y) dg, E > 0, j = 0,... , n - 1,
-00

K.(x, y) = K~o)(x, y).

Then differentiation under the integral sign is permissible, that is,

(fjijoyi) K.(x, y) = K~j)(x, y),

Further, for any L1J norm 1 :::;; p < 00:

j = 0,..., n - 1.

j = 0,... , n - 1. (2.3)

(a) uniformly on all compact
subsets of ~2 for j :::;; n - 2,
(b) uniformly on all compact
subsets of ~2 not intersecting the
diagonal x = y for j = n - 1. (2.4)

The kernel K.(x, y) is analytic in x and y and extended totally
positive, for € > 0. (2.5)

I K~n~l)(x, y)[ :::;; l,/or € > 0. I K~J)(x, y)1 is bounded for (x, y)
belonging to a compact set of R2, j = 0,... , n - 2, E > 0. (2.6)
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LEMMA 2.4. (a) Thegradientspaceofgoftheform (2.1) withmi ~ n - 1
contains H(g) E8 cone(g), where H(g) is the d(g)-dimensionallinear space of
all functions hex) with

d(g) = n +it (mi + 1) + (N - it mi) , (2.7)

7\-1 t m, !

hex) = L bixi + L L Sij(x - Yi)~-I-j + L Ci(X - Yi)~-1 , (2.8)
i~O i~l j~O i=l

where I = N - L~=1 mi , and °< Yl < Y2 ... < Y! < 1 are distinct from
the free knots of g.

(b) If g has a free knot at Yq, 0 < Yq < 1, with multiplicity mq ,
mq , 1 < mq ~ n - 2, then cone(g) contains the functions

with the restriction

s (x _ Y )(n-1)-(mq+1)
Q.mq+l q +

sgn Sq.mq+1 = sgn rq.mq-l .

(2.9)

(2.10)

Proof The major difficulty occurs in part (b) when mq = n - 2, we
will restrict ourselves to this case. We proceed as in the proof of part (c)
of Lemma 1.3, and borrow some of the notation used there.

Analogous to (1.11) we discuss the integral

G ( ) - _1_ f p(z) K.(x, z) dz
• x, u - 27Ti r (z _ Yq)n-4 ((z - Yq)2 - u) ,

where J(.(x, z) is defined in Lemma 2.3.
Replacing K.(x, y) in the right sides of (1.11) and (1.12) by L(x, y), we

define two functions G(x, u) and H(x, u) and proceed exactly as in the proof
of part (c) of Lemma 1.3.

We now replace (1.13) by

1 dn - a
aG(x, u) + bG.(x, u) = (n _ 3)1 dyn- a (p(y)(aL(x, y) + bKlx, y»)ly=.v'

yq - U1/2 < ji < yq + U1/2, and ji = yq if u = 0. (2.11)

We replace (1.14) for fixed x =F yq if U1/2 < I x - yq I, u > 0 (and for
x E [0, 1], u E [0, 8] if a = 0) by

8G. 1 dn - 1

aH(x, u) + b au (x, u) = (n _ 1)1 dyn-l (p(y)(aL(x, y) + bKlx, y»!l/=;'

yq - U1/2 < Y < yq + U1/2, and Y= yq if u = O. (2.12)
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While if UI /2 ;?: I x - Ya I, we replace (1.14) by
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(2.13)
I

+ L [1~~)(aL(j)(x, Ya + u1l2) + bK~i)(X, Yq + U
I/2))

i~O

Setting a = 0, b = 1 in (2.11) and (2.12) and using (2.6) we find that
G.(x, u), and (oG./ou)(x, u) are uniformly bounded for x E [0, 1], u E [0, 0].

For fixed x =1= Ya , setting a = 1, b = -1 in these equations, we note that
since the coefficients loiCu), llj(u), and 12i(u) of (2.13) are bounded for
UI / 2 ;?: I x - Yq [, that G.(x, u) uniformly approaches G(x, u) and
(oG./ou)(x, u) uniformly approaches H(x, u). Hence we obtain the result
that (oGlou)(x, u) exists and is continuous in u for fixed x =1= Yq ; moreover,
it and G(x, u) are uniformly bounded. Thus (d) of Definition (Ll) is satisfied
for this G(x, u).

Hence we have shown that hex) = (l/(n -1)!)(dn-1Idyn-1)(p(y) L(x, y)) ly~y
•is in the gradient space of g(x) = (l/(n - 3)!)(dn- 3Idyn- 3)(p(y) L(x, y)) ly~y .

•The general case is obtained by considering the analog of (1.16). This also
covers part (a) of the lemma. I

LEMMA 2.5. Let f(x) E qo, 1] and vanish only at afinite number ofpoints
with S-(f) = k. Let H represent the d(g)-dimensional subspace ofallfunctions
of form (2.8) satisfying (2.7). If d(g) ;?: k + 1 then there is an hI E H such
that f~ hI! < 0.

Proof We assume d(g) = k + 1, for if not our analysis would apply
to a suitably chosen subspace of H.

We rewrite (2.8) as

with Yo = 0 and m o = n - 1. Note

(2.14)

s

I (mi + 1) = M,
i~O

mi :::;; n - 1.
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For each E > 0, by smoothing and by Lemma 1.4, we obtain h.(x).

(2.1 5)

such that

hJ:;:;; 0 and rhJ < O.
o

(If hii(E) = hii , we say h.(x) in (2.15) is hex) of (2.14) smoothed.)
Moreover by multiplication by a suitable constant we assume

II h.11 = 1.

Since the functions (2.14) as well as the functions (2.1 5) are clearly linearly
independent, it follows from (2.3) that there exists a Q > 0, such that
(for more details see [5, proof of Theorem IJ):

II ~ hii(€) K.(j)(x, Yi)11 ~ Q L I hi;(€) I ,
'.J

€ > O.

Thus a subsequence of the h.(x) as € -+ 0 approaches a hI(x) E H, which
because of (2.3) satisfies the conclusions of the lemma. I

It now follows from the previous lemmas that

LEMMA 2.6. For 1 :;:;; p < 00, g optimal implies S-(F + g) ~ d(g).

Definitions 1.2 and 1.3 for the sign changes and generalized sign changes
of a function of the form (2.14) carry over; however, see the note after
Definition 1.2.

LEMMA 2.7. Ifh2(x) is of the form (2.14), then

(a) S-(h2):;:;; V-(h2) :;:;; M - 1.

(b) If S-(h2) = V-(h2) = k, then sgn h2(Xi) = Vii' j = 0,... , k, where
the Xi are a maximal setfor the sign changes ofhlx), and the Vi. are a maximal
number of coordinates for the sign changes in V(h2). '

Proof For a fixed h2(x) , and € > 0, let h.(x) be h2(x) smoothed. Hence
for sufficiently small €, we have by (2.4) and Lemma 1.6

This establishes (a), and (b) follows similarly. I
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With F(x) = J~ (x - y)~-1 dy, and g(x) of the form (2.1) with mi :::;; n - 1,
Definition 104 for V(F + g), as well as the definitions of V-(F + g), D(F + g),
C(F + g) and E(F + g) (of Lemma 1.7), carry over.

LEMMA 2.8. With the definitions above,

(a) S-(F + g) :s;; V-(F + g) :s;; D(F + g) - C(F + g) - E(F + g);

(b) if S-(F + g) = V-(F + g) = k, then sgn(F + g)(Xj) = Vj ,
j = 0,... , k, where the Xj are maximal set of coordinates for the sign changes
of F + g, and the Vi are a maximal number ofcoordinates for the sign changes
in V(F + g).

Proof The proof again follows by smoothing, since now clearly

lim (n - 1)1 II K/x, y) dy -+ II (x - y)~-1 dy uniformly.
,~O 0 0

LEMMA 2.9. Ifg of the form (2.1) is optimal, then

allfree knots in (0, 1) are ofodd multiplicity,
t

S-(F + g) = d(g) = D(F + g) - C(F + g) = n + Li~1 (m; + 1).

t
(a) N = L'~1 mi ,

(b)

(c)

Proof The proof is analogous to the proof of Lemma 8. I

LEMMA 2.1 0. If g of the form (2.1) is optimal then

(a) all the free knots of g have multiplicity one,

(b) at a free knot y; of multiplicity one sgn aiO = -1.

Proof The proof is analogous to the proof of Lemma 1.9; we merely
need apply Lemma 204(b) instead of Lemma 1.3(c). For fixed 11, we have
all'eady ruled out the possibility of a knot of multiplicity n, or of an even
multiplicity. Thus if n is odd, the highest multiplicity that can occur is n - 2.
Hence Lemma 204(b) is applicable. For n even, a knot of multiplicity n - 1
could conceivably occur; this is ruled out in the following Lemma. Thus
Lemma 204(b) is always applicable. This will complete our proof.

LEMMA 2.11. Ifg(x) is optimal then no knot ofg(x) has multiplicity n - 1.

Proof Say g(x) of (2.1) is optimal and has a knot of multiplicity n - 1
at yq , °< yq < 1. We show that this leads to a contradiction. We know that

t

S-(F + g) = V-(F + g) = n + L (m; + I), (2.16)
i~l
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which first implies, by Lemma 2.8(b) and the definition of V(F + g), that

sgn rq ,n-2 < O.

We now wish to establish over the open interval (0, Yq)

(2.17)

q-l

S-(F + g)l",e(o,Ya) = n + L (mi + I) = V(F + g)l",e(o,Yq ) (2.18)
i~1

and over the open interval (Yq , 1)

t

S-(F + g)[",e(Ya,l) = n + L (m; + I) = V(F + q)I",e(Yq ,I)' (2.19)
i=q+!

Say (2.18) did not hold, but rather

q-l

S-(F + g)[",e(o,ya) < n + L (mi + 1).
i=1

Let
n-l q-l mi-1

g_(x) = L aixi + L L r;j(x - y)~-1-j.
i=O i=1 j=O

The gradient space of g_ contains H(g_) of dimension
q-l

d(g_) = n + L (m; + 1)
;=1

(2.18)'

(2.19)'

(see Lemma 2.4). We can by Lemma 2.5 find a h_(x) E H(g_) such that

ra

sgn(F + g)[ F + g IP-1 h_(x) < O.
o

Further, since g has a knot of multiplicity n - I at Yq , the space H(g) -of
all functions of the form (2.8) contains functions with knots of multiplicity n
at Y q • Thus if

hex) = h_(x),

=0,

o ~ x ~ yq,

x> yq,

hex) E H(g). Hence by Lemma 2.2, g would not be optimal. This rules out
(2.18)'. Analogous reasoning holds for (2.19). Thus (2.16) implies (2.18) and
(2.19) must hold.

Since the last component to the right of V(F + g) [",e(o,ya) is 1+11, it follows
from Lemma 2.8(b) and (2.18) that

(F + g)(x) > 0, for € sufficiently small and Yq - € < X < Yq . (2.20)
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Equations (2.18) and (2.19) plus (2.16) imply F + g does not change sign
at x = Yq • Thus (2.20) and (2.17) imply

(F + g)(Yq) > 0. (2.21)

Further, (2.21) and (2.17) imply the procedure introduced by Rice [18,
Theorem 10-3, part (b)] may be used to get a better approximation to F
than g in the L p norm 1 ~ p < 00. This is a contradiction and the result
now follows. I

We summarize our results in the following theorem.

THEOREM 2. For 1 ~ p < 00 there exists a best L p approximation
g(x) to F(x) = f~ (x - y)~-l dy. Further, each best approximation is of the
form

where

n-l N

g(x) = L aixi + L riO(x - Yi)~-\
i~O i~l

(2.22)

an- 1 < 0, riO < 0, o < Yl < Y2 < ... < YN < 1.
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